Overvægt, tal og data
Generelt anses overvægt som en konsekvens af en stadig ubalance mellem energi-indtag og energiforbrug forårsaget af et komplekst sammenspil mellem genetisk modtagelighed og ernæringsmæssige, sociale, psykologiske og miljømæssige faktorer (4).

WHO definerer personer som overvægtige hvis de har et body mass index (BMI) ≥25.0 kg/m2 og som fede (obese) når de har et BMI på ≥30.0 kg/m2 (5). I denne opgave benyttes betegnelsen overvægtig da den også inkluderer fedme og da der på dansk ligger en værdiladning i ordet fed/fedme der ikke på samme måde eksisterer på engelsk.
• I år 2000 var 10% af danske mænd og 9% af danske kvinder svært overvægtige
• Hvert år er ~2% af alle dødsfald på grund af overvægt
• Svært overvægtige dør i gennemsnit 2-3 år for tidligt
• Hvert år er 55.000 hospitalsindlæggelser relateret til overvægt.
(6).

I 2008 var ca. 52% af den voksne befolkning i Danmark overvægtige, heraf var 18% svært overvægtige. Fremskriver man disse tal vil ca. 27% af befolkningen være svært overvægtige i 2030 (7).

2022: Antallet af overvægtige er steget drastisk over de sidste 50 år. Overvægt betragtes nu som en global helbredsudfordring som af WHO defineres som havende karakter af en pandemi. I globale tal var over 650 millioner voksne mennesker overvægtige i 2019.
Årsagen til at overvægt bliver betragtet som en helbredsudfordring er, at overvægtige statistisk set har en større risiko for at få type 2 diabetes, fedtlever, hjerte-kar sygdomme, forhøjet blodtryk, hjertetilfælde, demens, søvnapnø og visse kræfttyper; altså mange af de sygdomme vi generelt betragter som livsstilssygdomme (A).

Mikrobiom / mikrobiota – definitioner og forklaring
I min opgave brugte jeg følgende definitioner:
Mikrobiota: Et mikrobielt miljø der almindeligvis henviser til det område, som det optager (f.eks. tarmmikrobiotaen).
Mikrobiom: Helheden af det samlede genomer og gener af alle kroppens mikroorganismer
(8). Idet der fokuseres på miljøet i tarmen, vil betegnelserne mikrobiota/mikrobiom og ikke tarm-mikrobiota og tarm-mikrobiom blive anvendt (dvs. uden ”tarm”).

Mikrobiotaen udgør et komplekst økosystem der har >1000 arter med >7000 stammer og indeholder > 150 gange flere gener end det menneskelige genom (9). Den menneskelige tarm rummer trillioner af mikrober fra alle områder: Eukaryoter, bakterier og archaea, med dominans af bakterieceller. Der er bakterier i mavesæk og tyndtarm, men langt den største del findes i tyktarmen hvor ca. 90% af bakterierne hører til de to phyla Firmicuter og Bacteroidetes (4).
– Bacteroidetes er gramnegative, anaerobe, ikke-spore-dannende bakterier der indeholder enzymer der kan nedbryde kulhydrater
– Firmicuter er grampositive, anaerobe sporedannende bakterier der fermenterer simple sukkerarter således at der dannes forskellige kortkædede fedtsyrer (short chain fatty acids – SCFA)
(9).

De andre repræsenterede phylaer er vist i Figur 1 der fremstiller det bakterielle hierarki i mikrobiotaen (10) (11).

Figur 1 Skematisk fremstilling af det bakterielle hierarki i mikrobiotaen (11).

Referencer
A. Blüher, M, Obesity: global epidemiology and pathogenesis, Nature Reviews Endocrinology. 2019 (15) s. 288-298

1. Cho CE, Caudill MA. Trimethylamine-N-Oxide: Friend, Foe, or Simply Caught in the Cross-Fire? Trends in Endocrinology & Metabolism. 2017, 28(2), s. 121-131.
2. Schugar RC, Shih DM, Warrier M, Lusis AJ et al. The TMAO-Producing Enzyme Flavin-Containing Monooxygenase 3 Regulates Obesity and the Beiging of White Adipose Tissue. Cell Reports (Cambridge). 01. juni 2017, s. 2451-2461.
3. Wong, JMV. Gut microbiota and cardiometabolic outcomes: influence of dietary patterns and their associated components. The Americal Journal of Clinical Nutrition. 2014, s. 369–377.
4. Brahe LK, Astrup A, Larsen LH. Can We Prevent Obesity-Related Metabolic Diseases by Dietary Modulation of the Gut Microbiota? Advances in Nutrition – An international reveiw journal. juli 2016, s. 90-101.
5. WHO. Country profiles on nutrition, physical activity and obesity in the 28 European Union Member States of the WHO European Region. Methodology and summary. 2013.
6. Sundhedsstyrelsen. Risikofaktorer for folkesundhed i Danmark. s.l. : Statens Institut for Folkesundhed, 2014.
7. WHO. Denmark, Who Country Profile: Nutrition, Physical Activity and Obesity. 2013.
8. Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. The Journal of physiology. 2. juni 2009, s. 4153–4158.
9. Castanys-Muñoz E, Martin MJ, Vazquez E. Building a Beneficial Microbiome from Birth. Advances in Nutrition, an International Review Journal. Juli 2016, s. 323-330.
10. Mishra AK, Dubey V, Ghosh AR. Obesity – An overview of possible role(s) of gut hormones, lipid sensing and gut microbiota. Metabolism; Clinical and Experimental. 2016, 65, s. 46-65.
11. Tagliabue A, Elli M. The role of gut microbiota in human obesity: Recent findings and future perspectives. Nutrition, Metabolism & Cardiovascular Diseases. 2013, 23, s. 160-168.
12. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD et al. Obesity alters gut microbial ecology. PNAS. 2. august 2005, s. 11070-11075.
13. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. 10. november 2006, s. 1022-1023.
14. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL et al. A core gut microbiome in obese and lean twins. Nature. 22. januar 2009, 457, s. 480-485.
15. Garcia-Arocena D. The microbiome: We are more than we eat. The Jackson Laboratory – Blog Posts. [Online] 11. november 2015. [Citeret: 16. september 2017.] https://www.jax.org.
16. Kotzampassi K, Giamarellos-Bourboulis EJ, Stavrou G. Bacteria and Obesity: The Proportion Makes the Difference. Surgery: Current Research. 2013, (3)5, s. 1-6.
17. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host & Microbe. April 2008, s. 213–223.
18. Tilg H, Moschen AR, Kaser A. Obesity and the Microbiota. Gastroenterology. Maj 2009, s. 1476-1483.
19. Kallus SJ, Brandt LJ. The Intestinal Microbiota and Obesity. Journal of Clinical Gastroenterology. 2012, s. 16-24.
20. Goodrich JK, Waters JL, Poole AC, Sutter JL et al. Human Genetics Shape the Gut Microbiome. Cell. 6. november 2014, s. 789–799.
21. Beaumont M, Goodrich JK, Jackson MA, Yet I, Davenport ER et al. Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biology. 26. september 2016, s. 1-19.
22. Zhang L, Bahl MI, Roager HM, Fonvig CE et al. Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans. The ISME Journal. 2016, s. 1-16.
23. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon J. An obesity-associated gut microbiome. Nature. 28. december 2006, (444), s. 1027-1031.
24. Murphy EF, Cotter PD, Healy S, Marques TM et al. Composition and energy harvesting capacity of the gut microbiota: Relationship to diet, obesity and time in mouse models. Gut Microbiota. 2010, (59), s. 1635-1642.
25. Schwiertz A, Taras D, Schäfer K, Beijer S et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010, (18), s. 190-195.
26. Rahat-Rozenbloom S, Fernandes J, Gloor GB, Wolever TMS. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. International Journal of Obesity. 2014, (38), s. 1525-1531.
27. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007, (56), s. 1761-1772.
28. Delzenne NM, Cani PD. Nutritional modulation of gut microbiota in the context of obesity and insulin resistance: Potential interest of prebiotics. International Dairy Journal. 2010, s. 277-280.
29. Cani PD, Bibiloni R, Knauf C, Waget A et al. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet–Induced Obesity and Diabetes in Mice. Diabetes. 2008, (57), s. 1470-1481.
30. Angelakis E, Armougom F, Million M, Raoult D. The relationship between gut microbiota and weight gain in humans. Future Microbiology. 2012, (7)1, s. 91-109.
31. DTU Fødevareinstituttet. Danskernes kostvaner 2011-2013. s.l. : Rosendahls-Schultz Grafisk A/S, 2015.
32. Singh RK, Chang H-W, Yan D, Lee KM et al. Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine. 2017, (15)73, s. 1-17.
33. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metabolism. 6. oktober 2015, Årg. (4)22, s. 658-668.
34. Zimmer J, Lange B, Frick J-S, Sauer H, Zimmermann K, Schwiertz A et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. European Journal of Clinical Nutrition. 2012, s. 53-60.
35. ME, Sanders. Report from International Scientific Association for Probiotics and Prebiotics Annual Meeting 2017: Focus on Prebiotics. Gut Microbiota Research & Practice. [Online] 14. september 2017. http://www.gutmicrobiotaforhealth.com.
36. Charalampopoulos D, Rastall RA. Prebiotics in foods. Current opinion in Biotechnology. 2012, Årg. 23, s. 187-191.
37. Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Practice & Research Clinical Gastroenterology. Marts 2013, 27, s. 73-83.
38. Costabile A, Klinder A, Fava F, Napolitano A et al. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota – a double-blind, placebo-controlled, crossover study. British Journal of Nutrition. 2008, (99)1, s. 110-120.
39. Salazar N, Dewulf EM, Neyrinck AM, Bindels LB. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clinical Nutrition. 2015, (34), s. 501-507.
40. Devaraj S, Hemarajata P, Versalovic J. The Human Gut Microbiome and Body Metabolism – Implications for Obesity and Diabetes. Clinical Chemistry. 2013, (59)4, s. 617-628.
41. Schneiderhan J, Master-Hunter T, Locke A. Targeting gut flora to treat and prevent disease. The Journal of Family Practice. Januar 2016, (65), s. 33-39.
42. Ridaura VK, Faith JJ, Rey FE, Cheng J et al. Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science. 6. september 2013, (341).
43. Xiao L, Sonne SB, Feng Q, Chen N et al. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Microbiome. 2017, s. 1-12.
44. Cani PD, Delzenne NM. The gut microbiome as therapeutic target. Pharmacology & Therapeutics. 2011, (130), s. 202-213.
45. Dror T, Dickstein Y, Dubourg G, Paul M. Microbiota manipulation for weight change. Microbial Pathogenesis. 2017, (106), s. 146-161.
46. Lee SJ, Bose S, Seo J-G, Chung W-S et al. The effects of co-administration of probiotics with herbal medicine on obesity, metabolic endotoxemia and dysbiosis. Clinical Nutrition. 2014, s. 973-981.
47. Rouxinol-Diasa AL, Pintob AR, Janeirob C, Rodrigues D et al. Probiotics for the control of obesity – Its effect on weight change. Porto Biomedical Journal. 2016, s. 12-24.
48. Weizmann Institute of Science. Gut microbes contribute to recurrent ‘yo-yo’ obesity. MedicalXpress. 25. november 2016.
49. Thaiss CA, Itav S, Rothschild S, Meijer MT et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature. 22. december 2016, (640)7634, s. 544-551.
50. Schippa S, Conte MP. Dysbiotic Events in Gut Microbiota: Impact on Human Health. Nutrients. 6, 2014, s. 5786-5805.
51. Sundhedsstyrelsen. Kostrådgivning af patienter med iskæmisk hjertesygdom eller med risiko herfor, – en vejledning til lægen. 1999.
52. Noakes TD. Low-carbohydrate and high-fat intake can manage obesity and associated conditions – occasional survey. South African Medical Journal. 2013, (103)11, s. 826-831.
53. Santos S, Oliveira A, Lopes C. Systematic review of saturated fatty acids on inflammation and circulating levels of adipokines. Nutritional Research. 2013, (33), s. 687-695.
54. Jensen GS. Det levendes kemi. s.l. : Systime A/S, 2007. 978-87-616-0021-9.
55. van der Hulst RMWJ, van Kreel BK. Glutamine and the preservation of gut integrity. Lancet. 29. maj 1993, (341)8857, s. 1363-1366.
56. Parian AM, Shah ND, Mullin GE. Nutraceutical Supplements for Inflammatory Bowel Disease. Nutrition in Clinical Practice. August 2015, (30)4, s. 551-558.
57. Goyal A, Sharma V, Upadhyay N, Gill S. Flax and flaxseed oil: an ancient medicine & modern functional food. Journal of Food Science and Technology. September 2014, (51)9, s. 1633-1653.
58. Choi YY, Kim MH, Hong J, Kim S-H et al. Dried Ginger (Zingiber officinalis) Inhibits Inflammation in a Lipopolysaccharide-Induced Mouse Model. Evidence-Based Complementary and Alternative Medicine. 2013, s. 1-9.
59. Belluzzi A. n-3 Fatty acids for the treatment of inflammatory bowel diseases. Proceedings of the Nutrition Society. 2002, (61), s. 391-395.
60. Pereira-Santos M, Costa PRF, Assis AMO, Santos CAST et al. Obesity and vitamin D deficiency: a systematic review and meta analysis. Obesity Reviews. 2015, (16), s. 341-349.
61. Cario E, Jung S, Harder D’Heureuse J, Schulte C et al. Effects of exogenous zinc supplementation on intestinal epithelial repair in vitro. European Journal of Clinical investigations. 30. maj 2000, (5), s. 419-428.
62. Ciacci C, Russo I, Bucci C, Iovino P et al. The kiwi fruit peptide kissper displays anti-inflammatory and anti-oxidant effects in in-vitro and ex-vivo human intestinal models. The Journal of Translational Immunology. 18. oktober 2013, (175), s. 476-484.
63. Beccutia G, Pannaina S. Sleep and obesity. Current Opinion in Clinical Nutrition and Metabolic Care. 2011, (14), s. 402-412.
64. DTU fødevareinstituttet. Fødevaredata ver. 2. http://frida.fooddata.dk. [Online] [Citeret: 22. september 2017.] http://frida.fooddata.dk/CntList.php.
65. Kost og ernæringsforbundet. Send aldrig en tvangsoverspiser på kur. www.kost.dk. [Online] 15. august 2016. [Citeret: 23. september 2017.] https://www.kost.dk/send-aldrig-en-tvangsoverspiser-paa-kur.
66. Westermann S, Rief W, Euteneuer F, Kohlmann S. Social exclusion and shame in obesity. Eating behaviors. 2015, (17), s. 74-76.
67. Kirk SFL, Price SL, Penney TL, Rehman L et al. Blame, Shame, and Lack of Support – a multilevel study on obesity management. Qualitiative Health Research. 2014, (24)6, s. 790-800.
68. O’Reilly GA, Cook L, Spruijt-Metz D, Black DS. Mindfulness-based interventions for obesity-related eating behaviours: a literature review. Obesity Reviews. 2017, (15), s. 453-461.
69. Wong JM, de Souza R, Kendall CW, Emam A et al. Colonic health: Fermentation and short chain fatty acids. Journal of Clinical Gastroenterology. marts 2006, (40)3, s. 235-243.
70. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M et al. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Frontiers in Microbiology. 17. februar 2016, (7)185, s. 1-9.
71. Petrof EO, Gloor GB, Vanner SJ, Weese SJ et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome. 9. januar 2013, s. 1-12.
72. University of Calgary. New study on children shows fiber supplement changes gut bacteria. MedicalXpress. 7. juni 2017, s. 1-2.

(C) Mette Brahm, 2022